acetylacetonato ligands ($\mathrm{U}-\mathrm{O} \quad 2 \cdot 265-2 \cdot 366 \AA$) and from two tetrahydrofuran ligands ($\mathrm{U}-\mathrm{O} 2.618 \AA$). The $\mathrm{U}-\mathrm{Cl}$ distance is similar to that in $\left|\mathrm{UCl}_{3}(\mathrm{dmf})_{5}\right|^{+}$ (dmf = dimethylformamide; Charpin, Lance, Nierlich, Vigner \& Marquet-Ellis, 1988) with the same coordination number of eight for the U^{vV} oxidation state. The mean $\mathrm{U}-\mathrm{O}$ (acac) distance of 2.32 (4) \AA is usual for eight-coordinate derivatives of U^{IV}, while the $\mathrm{U}-\mathrm{O}$ (thf) distance of 2.618 (8) \AA is longer than that found in $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\text { (tf) })_{2}, 2.48(5) \AA$ (Charpin, Lance, Nierlich, Vigner \& Baudin, 1987). The stereochemistry of the U corresponds to a dodecahedral environment: the defining trapezoids are $\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}\left(1^{i}\right)-\mathrm{O}\left(2^{\mathrm{i}}\right)$, O atoms of the β diketones [deviations from a least-squares plane $0.050(8),-0.068(8) \AA 1$ and $\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}\left(3^{\mathrm{i}}\right)-\mathrm{Cl}^{\mathrm{i}}$ |deviations -0.081 (8), 0.045 (3) \AA |, the dihedral angle between these two planes being $91.8(7)^{\circ}$. The diketones are bidentate on two mm edges of the dodecahedron (Hoard \& Silverton, 1963).

The β diketones have the usual planar geometry lthe atoms are within 0.02 (1) \AA of the best least-squares planel and the folding angle along the line $\mathrm{O}(1)-\mathrm{O}(2)$ is 7 (1) ${ }^{\circ}$.

One of the two thf rings, B, is planar while ring A deviates slightly from a plane (deviations from leastsquares plane: A : $\mathrm{O}(3)-0.244(8), \mathrm{C}(11 A) 0.19$ (2),
$\mathrm{C}(12 A)-0.08$ (2), C(13) -0.05 (2), $\mathrm{C}(14) 0.18$ (2); $B:$ $\mathrm{O}(3)-0.030$ (8), $\mathrm{C}(11 B) 0.04$ (4), $\mathrm{C}(12 B)-0.03$ (4), $\mathrm{C}(13) 0.01$ (2), C(14) 0.01 (2) $\AA \mid$. The dihedral angle between these two thf conformations is $21(2)^{\circ}$: they can be considered as the two extreme conformations with maximum and minimum deviations from planarity for A and B, respectively, and may result from intraand intermolecular steric requirements, but motion of these molecules cannot be excluded.

References

Bagnall, K. W., Edwards, J., Richard, C. \& Tempest, A. (1979). J. Inorg. Nucl. Chem. 41, 1321-1323.

Charpin, P., Lance, M., Nierlich, M., Vigner, D. \& Baudin, C. (1987). Acta Cryst. C43, 1832-1833.

Charpin, P., Lance, M., Nierlich, M., Vigner, D. \& MarquetEllis, H. (1988). Acta Cryst. C44, 257-259.
Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide. College Station, Texas 77840, USA. and Enraf-Nonius, Delft, The Netherlands.
Hoard, J. L. \& Silverton, J. V. (1963). Inorg. Chem. 2, 235-243.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A 39, 158-166.

N, N-Dimethylformamide-Uranium Tetrachloride Complex: Structure of Trichloropentakis(N, N-dimethylformamide)uranium(IV) Hexachlorouranate(IV)

By P. Charpin, M. Lance, M. Nierlich, D. Vigner and H. Marquet-Ellis
CEA-CEN/Saclay IRDI/DESICP/DPC/SCM, UA-CNRS 331, 91191 Gif sur Yvette CEDEX, France

(Received 28 July 1987; accepted 26 October 1987)

Abstract

U}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{5} \mathrm{Cl}_{3}\right]_{2}\left[\mathrm{UCl}_{6}\right], \quad M_{r}=1870 \cdot 48\), monoclinic, $P 2_{1} / n, a=9.313$ (6), $b=24.815$ (5), c $=13.681$ (3) $\AA, \quad \beta=95.65$ (4) ${ }^{\circ}, \quad V=3146$ (2) $\AA^{3}, \quad Z$ $=2, \quad D_{x}=1.974 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71073 \AA, \mu$ $=78.66 \mathrm{~cm}^{-1}, F(000)=3520, T=295 \mathrm{~K}, R_{F}=0.047$ for 1181 independent observed reflections. The structure determination establishes the complex stoichiometry to be $2\left[\mathrm{U}^{\mathrm{IV}} \mathrm{Cl}_{3}(\mathrm{dmf})_{5}\right]^{+} .\left[\mathrm{U}^{\mathrm{IV}} \mathrm{Cl}_{6}\right]^{2-}$. In the cationic species the \mathbf{U} atom is eight coordinated by three Cl atoms $[\mathrm{U}-\mathrm{Cl} 2.67$ (1) \AA] and five O atoms [$\mathrm{U}-\mathrm{O} 2.37(6) \AA$], while in the classical anion the U atom has an octahedral coordination of Cl atoms [$\mathrm{U}-\mathrm{Cl} 2.62$ (2) \AA A.

Introduction. Complexes resulting from the reaction of UCl_{4} with N, N-dialkylamides of moderate size

generally possess the formula $\mathrm{UCl}_{4} \cdot 2 \cdot 5 \mathrm{~L}$ (where $L=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CON}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \quad$ (depa), $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$ (dmpa) (Al-Daher \& Bagnall, 1984; Bagnall, Beddoes, Mills \& Li, 1982) or $\mathrm{CH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$ (dmaa) (Bagnall, Deane, Markin, Robinson \& Stewart, 1961)]. However, with smaller amides such as HCONMe_{2} (dmf), several formulas have been proposed, $\mathrm{UCl}_{4} .2 .5 \mathrm{dmf}$ (Gans \& Smith, 1964) or $\mathrm{UCl}_{4} .2 \mathrm{dmf}$ (du Preez \& Koorts, 1973), in the absence of monocrystalline material to determine the crystal structure.

The synthesis followed by a modified crystallization process has allowed us to obtain, from a single crystal, a structure which points to a different stoichiometry.

Experimental. Synthesis identical to that of Gans \& Smith (1964): previously distilled dmf added to UCl_{4},
(c) 1988 International Union of Crystallography

Table 1. Positional, isotropic (or equivalent isotropic) thermal parameters and their e.s.d.'s

	x	y	z	$B\left(\AA^{2}\right)$
U(2)	0.000	0.000	0.000	$3 \cdot 65$ (5)*
$\mathrm{Cl}(21)$	0.190 (1)	0.0251 (5)	$0 \cdot 1444$ (8)	$6 \cdot 6$ (3)*
$\mathrm{Cl}(22)$	0.082 (1)	0.0815 (5)	-0.1022 (8)	$6 \cdot 0$ (3)*
$\mathrm{Cl}(23)$	-0.188(1)	0.0639 (5)	0.0735 (9)	6.6 (3)*
U(1)	0.3352 (2)	$0 \cdot 14940$ (6)	0.5263 (1)	3.13 (3)**
$\mathrm{Cl}(11)$	0.546 (1)	0.0887 (4)	0.4645 (8)	$5 \cdot 6$ (3)*
$\mathrm{Cl}(12)$	0.463 (1)	$0 \cdot 2406$ (4)	0.4820 (7)	$5 \cdot 1$ (3)*
$\mathrm{Cl}(13)$	0.072 (1)	$0 \cdot 1929$ (6)	0.493 (1)	7.8 (4)*
O(1)	0.292 (2)	0.201 (1)	0.668 (2)	4.9 (6)
O(2)	0.542 (2)	0.155 (1)	0.652 (2)	5.4 (6)
O(3)	0.196 (3)	0.076 (1)	0.463 (2)	7.2 (8)
O(4)	0.304 (3)	0.090 (1)	0.650 (2)	5.8 (7)
O(5)	0.296 (3)	0.158 (1)	0.354 (2)	$6 \cdot 8$ (7)
N(1)	0.272 (3)	0.272 (1)	0.776 (2)	5.4 (8)
N(2)	0.757 (3)	0.174 (1)	0.730 (2)	$3 \cdot 3$ (7)
$N(3)$	0.101 (3)	0.002 (1)	0.392 (2)	$5 \cdot 5$ (8)
N(4)	0.411 (3)	0.049 (1)	0.787 (2)	$4 \cdot 1$ (7)
N(5)	0.291 (3)	0.158 (2)	0.192 (2)	$6 \cdot 3$ (9)
C(11)	0.283 (3)	0.250 (2)	0.682 (3)	4.2 (9)
C(12)	0.277 (4)	0.235 (2)	0.853 (3)	7 (1)
C(13)	0.279 (4)	0.328 (1)	0.789 (3)	5 (1)
C(21)	0.671 (3)	0.171 (1)	0.652 (3)	$3 \cdot 8$ (9)
C(22)	0.905 (4)	0.192 (2)	0.730 (3)	7 (1)
C(23)	0.712 (4)	0.164 (2)	0.828 (3)	5 (1)
C(31)	0.212 (4)	0.031 (2)	0.439 (3)	6 (1)
C(32)	-0.028 (4)	0.031 (2)	0.354 (3)	6 (1)
C(33)	0.110 (4)	-0.051 (2)	0.365 (3)	6 (1)
C(41)	0.346 (4)	0.089 (2)	0.736 (3)	5 (1)
C(42)	0.441 (4)	0.001 (2)	0.728 (3)	8 (1)
C(43)	0.454 (4)	0.050 (2)	0.883 (3)	5 (1)
C(51)	0.348 (5)	$0 \cdot 150$ (2)	0.282 (3)	8 (1)
C(52)	0.369 (6)	0.156 (3)	$0 \cdot 111$ (4)	15 (2)
C(53)	0.152 (6)	$0 \cdot 172$ (2)	0.177 (5)	13 (2)

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ (e.s.d.'s in parentheses) in uranium environments

(i) $\left[\mathrm{UCl}_{3}(\mathrm{dmf})_{5}\right]^{+}$			
$\mathrm{U}(1)-\mathrm{Cl}(11) \quad 2$	$2 \cdot 68$ (1)	$\mathrm{U}(1)-\mathrm{O}(2) \quad 2$	2.45 (2)
$\mathrm{U}(1)-\mathrm{Cl}(12) \quad 2$	$2 \cdot 66$ (2)	$\mathrm{U}(1)-\mathrm{O}(3) \quad 2$	$2 \cdot 35$ (3)
$\mathrm{U}(1)-\mathrm{Cl}(13) \quad 2$	$2 \cdot 68$ (1)	$\mathrm{U}(1)-\mathrm{O}(4) \quad 2$	2.29 (3)
$\mathrm{U}(1)-\mathrm{O}(1) \quad 2$	$2 \cdot 40$ (3)	$\mathrm{U}(1)-\mathrm{O}(5)$	$2 \cdot 36$ (3)
$\mathrm{Cl}(11)-\mathrm{U}(1)-\mathrm{Cl}(12)$) $92.8(3)$	$\mathrm{Cl}(12)-\mathrm{U}(1)-\mathrm{Cl}(13)$	92.4 (4)
$\mathrm{Cl}(11)-\mathrm{U}(1)-\mathrm{Cl}(13)$) 149.5 (4)	$\mathrm{Cl}(11)-\mathrm{U}(1)-\mathrm{O}(3)$	80.9 (7)
$\mathrm{U}(1)-\mathrm{O}(1)-\mathrm{C}(11)$	132 (2)	$\mathrm{U}(1)-\mathrm{O}(4)-\mathrm{C}(41)$	132 (3)
$\mathrm{U}(1)-\mathrm{O}(2)-\mathrm{C}(21)$	135 (2)	$\mathrm{U}(1)-\mathrm{O}(5)-\mathrm{C}(51)$	144 (3)
$\mathrm{U}(1)-\mathrm{O}(3)-\mathrm{C}(31)$	139 (3)		
(ii) $\left[\mathrm{UCl}_{6}\right]^{2-}$			
$\mathrm{U}(2)-\mathrm{Cl}(21)$	2.59 (2)	$\mathrm{Cl}(22)-\mathrm{U}(2)-\mathrm{Cl}(23)$	91.2 (4)
$\mathrm{U}(2)-\mathrm{Cl}(22)$	2.62 (1)	$\mathrm{Cl}(22)-\mathrm{U}(2)-\mathrm{Cl}(21)$	90.5 (4)
$\mathrm{U}(2)-\mathrm{Cl}(23)$	2.64 (1)	$\mathrm{Cl}(21)-\mathrm{U}(2)-\mathrm{Cl}(23)$	89.5 (4)

crystal obtained on leaving mixture for several days at 263 K , after the addition of either $\mathrm{C}_{6} \mathrm{H}_{6}$ or solid UCl_{4} to reduce the excess dmf; pale-green crystals manipulated in the absence of air and selected under Nujol; crystal $0.50 \times 0.15 \times 0.10 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer; unit-cell parameters refined from 25 reflections in range $16<2 \theta<24^{\circ}$; three standard reflections monitored at 100 -reflection intervals, loss of $7 \cdot 1 \%$ in 26 h , linearly corrected; scans by $\omega / 2 \theta$ method; $4<2 \theta<50^{\circ} ; 2450$ reflections collected, 2363 unique, 1185 with $I>3 \sigma(I) ;-8 \leq h \leq 8,0 \leq k \leq 21,0 \leq l \leq 11$; Lorentz and polarization corrections; empirical absorption correction based on ψ scans (North, Phillips \& Mathews, 1968), minimum transmission coefficient
0.938; structure solved by Patterson method for U, remaining atoms located by difference Fourier technique; full-matrix least-squares refinement on F; scattering factors including anomalous-dispersion terms from International Tables for X-ray Crystallography (1974); anisotropic thermal parameters for U and $\mathrm{Cl} ; \mathrm{H}$ atoms introduced at calculated positions ($\mathrm{C}-\mathrm{H}=$ $0.95 \AA, B=1.3 B_{\mathrm{C}}$), not refined but constrained to ride on their C atoms; $R=0.047, w R=0.057(w=1)$; \max (shift/e.s.d.) $=0.04, S=5.0$; highest peak in final difference $\operatorname{map}=0.9$ e \AA^{-3} [near $U(1)$]; program: Enraf-Nonius Structure Determination Package, SDPPlus (Frenz, 1983), PDP 11/23 Plus; figures plotted using ORTEPII (Johnson, 1976).

Discussion. Positional parameters and isotropic (or equivalent isotropic) temperature factors are listed in Table 1,* characteristic bond lengths and angles in Table 2.

[^0]

Fig. 1. Drawing of the cation $\left[\mathrm{UCl}_{3}(\mathrm{dmf})_{5}\right]^{+}$showing the atom numbering.

Fig. 2. Coordination geometry of the cation $\left[\mathrm{UCl}_{3}(\mathrm{dmf})_{5}\right]^{+}$.

The compound $\mathrm{UCl}_{4} \cdot 3 \cdot 3 \mathrm{dmf}$ is formed by two $\mathrm{U}^{\text {IV }}$ complex ions $\left[\mathrm{UCl}_{3}\left(\mathrm{dmf}_{5} \mathrm{l}^{+}\right.\right.$(Fig. 1) and $\left[\mathrm{UCl}_{6}\right]^{2-}$. In the cation, the U atom has no imposed crystallographic symmetry while in the anion the U atom lies on an inversion centre. The anion $\left[\left.\mathrm{UCl}_{6}\right|^{2-}\right.$ is a nearly regular octahedron, the $\mathrm{U}-\mathrm{Cl}$ distances ranging from 2.59 (2) to 2.64 (1) \AA. The U atom of the cation is eight coordinated by three Cl atoms $\mid \mathrm{U}-\mathrm{Cl} 2.66$ (2)2.68 (1) \AA | and five dmf ligands |U-O 2.29 (3)2.45 (2) \AA). This eight coordination (Fig. 2) does not fall into the idealized geometries of dodecahedron, bicapped trigonal prism or square antiprism. The three Cl and $\mathrm{O}(3)$ atoms are coplanar, plane 1 [deviations of $\mathrm{Cl}(11), \mathrm{Cl}(12), \mathrm{Cl}(13)$ and $\mathrm{O}(3)$ from least-squares plane: -0.05 (1), 0.043 (1), -0.05 (1), 0.06 (3) \AA respectively] and parallel to the $\mathrm{O}(1) \mathrm{O}(2) \mathrm{O}(4)$ plane (plane 2). The U atom lies at 0.69 (1) \AA above plane 1 and 1.78 (2) \AA below plane 2 ; the $U-O(5)$ bond is perpendicular to these planes.

The average $\mathrm{U}-\mathrm{Cl}$ bond lengths are 2.67 (1) \AA in the cation and 2.62 (2) \AA in the anion, values which are similar to those reported for $\left[\mathrm{UCl}_{3}(\mathrm{depa})_{4}\right]^{+}$ $\left[2.65\right.$ (3) \AA]. $\left[\mathrm{UCl}_{5}(\mathrm{depa})\right]^{-}[2.58$ (3) \AA] (Bagnall et al., 1982), $\left|\mathrm{UCl}_{3}(\mathrm{dcc})\right|^{+} \quad(\mathrm{dcc}=$ dicyclohexyl-18-crown-6) $\left\lceil 2.6512(\AA) \mid . \mathrm{UCl}{ }_{6}{ }^{2-}\right.$ [2.61 (4) $\left.\AA\right\rceil$ (de Villardi, Charpin, Costes, Folcher, Plurien, Rigny \& de Rango, 1978): the significantly shorter values in the anion may result from less hindrance around the U atom. The three structures show that $\left[\mathrm{UCl}_{3}\right]^{+}$is not a rigid cation, its conformation depends on the total U coordination: $\left[\mathrm{UCl}_{3}\right]^{+}$ is planar in $\left[\left.\mathrm{UCl}_{3}(\mathrm{depa})_{4}\right|^{+}\right.$with $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ angles 177, 89 and 93° (heptacoordinated U) and in $\left[\mathrm{UCl}_{3}(\mathrm{dcc})\right]^{+}$with $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ angles 141,141 and 77° (nonacoordinated U) while in $\left|\mathrm{UCl}_{3}(\mathrm{dmf})_{5}\right|^{+}$described
here, the U atom is out of the Cl plane with $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ angles of 93,92 and 149° (octacoordinated U).
The mean U-O distance [2.37(5) \AA] is in good agreement with those found for $2[\mathrm{UCl}(\mathrm{dmf})]^{3+}$.$3\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]^{12-}[2.35(3) \AA:$ Kepert, Patrick \& White (1983)]. However, one dmf ligand seems to be differently attached judging from the $\mathrm{U}-\mathrm{O}-\mathrm{C}$ angle: the value of $144(3)^{\circ}$ for ligand 5 , which occupies the apical position in the U coordination sphere, is slightly higher than the mean value of the others, $134(3)^{\circ}$.

References

Al-Daher, A. G. M. \& Bagnall, K. W. (1984). J. Less-Common Met.pp. 343-348.
Bagnall, K. W., Beddoes, R. L., Mills, O. S. \& Lı, X.-F. (1982). J. Chem. Soc. Dalton Trans. pp. 1361-1364.

Bagnall, K. W., Deane, A. M., Markin, T. L., Robinson, P. S. \& Stewart, M. A. A. (1961). J. Chem. Soc. pp. 1611-1617.
Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide, version of 6 January 1983. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands.
Gans, P. \& Smith, B. C. (1964). J. Chem. Soc. pp. 4177-4179.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kepert, D. L., Patrick, J. M. \& White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 381-384.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A 24, 351-359.
Preez, J. G. H. du \& Koorts, J. (1973). Inorg. Nucl. Chem. Lett. 9, 99-107.
Villardi, G. L. de, Charpin, P., Costes, R. M., Folcher, G, Plurien, P., Rigny, P. \& de Rango, C. (1978). J. Chem. Soc. Chem. Commun. pp. 90-92.

Acta Cryst. (1988). C44, 259-262

Structure of Tetrathiafulvalenium Bis(5,6-dihydro-1,4-dithiin-2,3-dithiolato)aurate(III), (TTF)[Au(DDDT) $\left.{ }_{2}\right]$

By Urs Geiser, Arthur J. Schultz, Hau H. Wang, Mark A. Beno and Jack M. Williams*
Chemistry and Materials Science Divisions, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 29 June 1987; accepted 7 October 1987)

Abstract. $\left|\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{4} \| \mathrm{Au}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{4}\right)_{2}\right|, \quad M_{r}=761.9$, triclinic, $\quad P \overline{1}, \quad a=8.7247$ (8),$\quad b=9.5089$ (10),$\quad c=$ 14.7007 (19) $\AA, \quad \alpha=107.179$ (10), $\quad \beta=102.372$ (9), $\gamma=95.934(8)^{\circ}, \quad V=1119.8(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.26 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K \alpha, \lambda=0.71073 \AA)=7.63 \mathrm{~mm}^{-1}$, $F(000)=734, \quad T=298 \mathrm{~K}, \quad R(F)=0.082$ for 2306

[^1]0108-2701/88/020259-04\$03.00
observed reflections ($F_{o}>2 \sigma$). The structure contains two inequivalent, centrosymmetric $\left|\mathrm{Au}(\mathrm{DDDT})_{2}\right|^{-}$ complexes. One of these is located in the same molecular layer as the dimerized TTF^{+}cations, whereas the other lies between these layers. The dimerization of the TTF^{+}cations and the molecular packing arrangement do not favor high electrical conductivity in the title compound.
© 1988 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44488 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence is to be addressed.

